A DNA/Upconversion Nanoparticle Complex Enables Controlled Co-Delivery of CRISPR-Cas9 and Photodynamic Agents for Synergistic Cancer Therapy

Adv Mater. 2024 Apr;36(15):e2309534. doi: 10.1002/adma.202309534. Epub 2024 Jan 15.

Abstract

Photodynamic therapy (PDT) depends on the light-irradiated exciting of photosensitizer (PS) to generate reactive oxygen species (ROS), which faces challenges and limitations in hypoxia and antioxidant response of cancer cells, and limited tissue-penetration of light. Herein, a multifunctional DNA/upconversion nanoparticles (UCNPs) complex is developed which enables controlled co-delivery of CRISPR-Cas9, hemin, and protoporphyrin (PP) for synergistic PDT. An ultralong single-stranded DNA (ssDNA) is prepared via rolling circle amplification (RCA), which contains recognition sequences of single guide RNA (sgRNA) for loading Cas9 ribonucleoprotein (RNP), G-quadruplex sequences for loading hemin and PP, and linker sequences for combining UCNP. Cas9 RNP cleaves the antioxidant regulator nuclear factor E2-related factor 2 (Nrf2), improving the sensitivity of cancer cells to ROS, and enhancing the synergistic PDT effect. The G-quadruplex/hemin DNAzyme mimicks horseradish peroxidase (HRP) to catalyze the endogenous H2O2 to O2, overcoming hypoxia condition in tumors. The introduced UCNP converts NIR irradiation with deep tissue penetration to light with shorter wavelength, exciting PP to transform the abundant O2 to 1O2. The integration of gene editing and PDT allows substantial accumulation of 1O2 in cancer cells for enhanced cell apoptosis, and this synergistic PDT has shown remarkable therapeutic efficacy in a breast cancer mouse model.

Keywords: CRISPR‐Cas9; DNA nanotechnology; gene editing; photodynamic therapy; upconversion nanoparticle.

MeSH terms

  • Animals
  • Antioxidants
  • CRISPR-Cas Systems
  • Cell Line, Tumor
  • Hemin
  • Hydrogen Peroxide
  • Hypoxia
  • Mice
  • Nanoparticles* / therapeutic use
  • Neoplasms* / drug therapy
  • Photochemotherapy*
  • Photosensitizing Agents / pharmacology
  • Photosensitizing Agents / therapeutic use
  • RNA, Guide, CRISPR-Cas Systems
  • Reactive Oxygen Species / metabolism

Substances

  • Reactive Oxygen Species
  • Antioxidants
  • Hemin
  • Hydrogen Peroxide
  • RNA, Guide, CRISPR-Cas Systems
  • Photosensitizing Agents