Confining Bismuth-Halide Perovskite in Mesochannels of Silica Nanomembranes for Exceptional Photocatalytic Abatement of Air Pollutants

Angew Chem Int Ed Engl. 2024 Mar 11;63(11):e202319741. doi: 10.1002/anie.202319741. Epub 2024 Jan 24.

Abstract

Spatially confined photocatalysis has emerged as a viable strategy for the intensification of various redox reactions, but the influence of confined structure on reaction behavior is always overlooked in gas-solid reactions. Herein, we report a nanomembrane with confining Cs3 Bi2 Br9 nanocrystals inside vertical channels of porous insulated silica thin sheets (CBB@SBA(⊥)) for photocatalytic nitric oxide (NO) abatement. The ordered one-dimensional (1D) pore channels with mere 70 nm channel length provide a highly accessible confined space for catalytic reactions. A record-breaking NO conversion efficiency of 98.2 % under a weight hourly space velocity (WHSV) of 3.0×106 mL g-1 h-1 , as well as exceptionally high stability over 14 h and durability over a wide humidity range (RH=15-90 %) was realized over SBA(⊥) confined Cs3 Bi2 Br9 , well beyond its nonconfined analogue and the Cs3 Bi2 Br9 confine in Santa Barbara Amorphous (SBA-15). Mechanism studies suggested that the insulated pore channels of SBA(⊥) in CBB@SBA(⊥) endow concentrated electron field and enhanced mass transfer that render high exposure of reactive species and lower reaction barrier needs for ⋅O2 - formation and NO oxidation, as well as prevents structural degradation of Cs3 Bi2 Br9 . This work expands an innovative strategy for designing efficient photocatalysts for air pollution remediation.

Keywords: Bismuth-Halide Perovskite; Confinement Effect; Photocatalytic NO Abatement; Porous Silica Nanomembrane.