Machine learning interpretable models of cell mechanics from protein images

Cell. 2024 Jan 18;187(2):481-494.e24. doi: 10.1016/j.cell.2023.11.041. Epub 2024 Jan 8.

Abstract

Cellular form and function emerge from complex mechanochemical systems within the cytoplasm. Currently, no systematic strategy exists to infer large-scale physical properties of a cell from its molecular components. This is an obstacle to understanding processes such as cell adhesion and migration. Here, we develop a data-driven modeling pipeline to learn the mechanical behavior of adherent cells. We first train neural networks to predict cellular forces from images of cytoskeletal proteins. Strikingly, experimental images of a single focal adhesion (FA) protein, such as zyxin, are sufficient to predict forces and can generalize to unseen biological regimes. Using this observation, we develop two approaches-one constrained by physics and the other agnostic-to construct data-driven continuum models of cellular forces. Both reveal how cellular forces are encoded by two distinct length scales. Beyond adherent cell mechanics, our work serves as a case study for integrating neural networks into predictive models for cell biology.

Keywords: biomechanics; biophysics; cell mechanics; focal adhesions; machine learning; neural network; traction force microscopy; zyxin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cell Adhesion
  • Cytoplasm / metabolism
  • Cytoskeletal Proteins* / metabolism
  • Focal Adhesions / metabolism
  • Machine Learning*
  • Models, Biological

Substances

  • Cytoskeletal Proteins