Effect of the Fran CrossFit Workout on Oxygen Uptake Kinetics, Energetics, and Postexercise Muscle Function in Trained CrossFitters

Int J Sports Physiol Perform. 2024 Jan 9;19(3):299-306. doi: 10.1123/ijspp.2023-0201. Print 2024 Mar 1.

Abstract

Purpose: Fran is one of the most popular CrossFit benchmark workouts used to control CrossFitters' improvements. Detailed physiological characterization of Fran is needed for a more specific evaluation of CrossFitters' training performance improvements. The aim of the study was to analyze the oxygen uptake (V˙O2) kinetics and characterize the energy system contributions and the degree of postexercise fatigue of the unbroken Fran.

Methods: Twenty trained CrossFitters performed Fran at maximal exertion. V˙O2 and heart-rate kinetics were assessed at baseline and during and post-Fran. Blood lactate and glucose concentrations and muscular fatigue were measured at baseline and in the recovery period.

Results: A marked increase in V˙O2 kinetics was observed at the beginning of Fran, remaining elevated until the end (V˙O2peak: 49.2 [3.7] mL·kg-1·min-1, V˙O2 amplitude: 35.8 [5.2] mL·kg-1·min-1, time delay: 4.7 [2.5] s and time constant: 23.7 [11.1] s; mean [SD]). Aerobic, anaerobic lactic, and alactic pathways accounted for 62% (4%), 26% (4%), and 12% (2%) of energy contribution. Reduction in muscle function in jumping ability (jump height: 8% [6%], peak force: 6% [4%], and maximum velocity: 4% [2%]) and plank prone test (46% [20%]) was observed in the recovery period.

Conclusions: The Fran unbroken workout is a high-intensity effort associated with an elevated metabolic response. This pattern of energy response highlights the primary contribution of aerobic energy metabolism, even during short and very intense CrossFit workouts, and that recovery can take >24 hours due to cumulative fatigue.

Keywords: blood lactate; energy systems; recovery; training.

MeSH terms

  • Fatigue*
  • Humans
  • Muscle Fatigue / physiology
  • Muscles
  • Oxygen
  • Oxygen Consumption* / physiology

Substances

  • Oxygen