Volume holograms with linear diffraction efficiency relation by (3 + 1)D printing

Opt Lett. 2024 Jan 15;49(2):322-325. doi: 10.1364/OL.508097.

Abstract

We demonstrate the fabrication of volume holograms using two-photon polymerization with dynamic control of light exposure. We refer to our method as (3 + 1)D printing. Volume holograms that are recorded by interfering reference and signal beams have a diffraction efficiency relation that is inversely proportional to the square of the number of superimposed holograms. By using (3 + 1)D printing for fabrication, the refractive index of each voxel is created independently and thus, by digitally filtering the undesired interference terms, the diffraction efficiency is now inversely proportional to the number of multiplexed gratings. We experimentally demonstrated this linear dependence by recording M = 50 volume gratings. To the best of our knowledge, this is the first experimental demonstration of distributed volume holograms that overcome the 1/M2 limit.