Highland barley β-glucan supplementation attenuated hepatic lipid accumulation in Western diet-induced non-alcoholic fatty liver disease mice by modulating gut microbiota

Food Funct. 2024 Feb 5;15(3):1250-1264. doi: 10.1039/d3fo03386d.

Abstract

Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases worldwide. NAFLD is caused by numerous factors, including the genetic susceptibility, oxidative stress, unhealthy diet, and gut microbiota dysbiosis. Among these, gut microbiota is a key factor and plays an important role in the development of NAFLD. Therefore, modulating the composition and structure of gut microbiota might provide a new intervention strategy for NAFLD. Highland barley β-glucan (HBG) is a polysaccharide that can interact with gut microbiota after entering the lower gastrointestinal tract and subsequently improves NAFLD. Therefore, a Western diet was used to induce NAFLD in mouse models and the intervention effects and underlying molecular mechanisms of HBG on NAFLD mice based on gut microbiota were explored. The results indicated that HBG could regulate the composition of gut microbiota in NAFLD mice. In particular, HBG increased the abundance of short-chain fatty acids (SCFA)-producing bacteria (Prevotella-9, Bacteroides, and Roseburia) as well as SCFA contents. The increase in SCFA contents might activate the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, thereby improving the liver lipid metabolism disorder and reducing liver lipid deposition.

MeSH terms

  • Animals
  • Diet, High-Fat
  • Diet, Western / adverse effects
  • Dietary Supplements
  • Gastrointestinal Microbiome*
  • Hordeum*
  • Lipids / pharmacology
  • Liver / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Non-alcoholic Fatty Liver Disease* / metabolism
  • beta-Glucans* / pharmacology

Substances

  • beta-Glucans
  • Lipids