A decade-long journey shed light on chemical composition and field determination of acid mine drainage in Brazil

Environ Monit Assess. 2024 Jan 9;196(2):123. doi: 10.1007/s10661-024-12304-y.

Abstract

Regular monitoring of Acid Mine Drainage (AMD) is essential for understanding its extent and impact on water resources. Traditional manual sampling methods have limitations, such as limited representativeness and delayed lab analysis. High-frequency monitoring offers an alternative, enabling real-time analysis of AMD fluctuations and determination of constituents in the field. This study assessed a decade-long environmental monitoring database from watersheds impacted by coal mining in Brazil to analyze the relationships between physical properties and constituents from different water sources affected by AMD. Samples were grouped into four categories based on location and contamination levels. Results revealed that water samples from the two groups not affected by AMD exhibited near-neutral pH, low metal and sulfate concentrations, and a large portion of samples below the quantification limit for Mn and Al. In contrast, samples from groups affected by AMD displayed high metal and sulfate concentrations and acidic pH, with the highest contamination observed in the underground mine discharges group (AMD UMD). Spearman correlation analyzes between field (pH and electrical conductivity (EC)) and lab (SO42-, Fe, Mn, and Al) parameters showed no significant correlations in non-AMD-affected groups, but significant correlations in AMD-affected groups, particularly the Streams group. A regression model between sulfate and EC was identified as the best predictor for AMD, enabling continuous, low-cost monitoring of contaminated streams and providing insight into previously unobserved AMD processes, such as variations in contamination during storm events and river flushing.

Keywords: Pyrite oxidation; Southern Brazil; Water resources monitoring and assessment.

MeSH terms

  • Brazil
  • Coal Mining*
  • Environmental Monitoring*
  • Sulfates
  • Water

Substances

  • Sulfates
  • Water