Key dependent information confidentiality scheme based on deoxyribonucleic acid (DNA) and circular shifting

Heliyon. 2023 Dec 12;10(1):e23572. doi: 10.1016/j.heliyon.2023.e23572. eCollection 2024 Jan 15.

Abstract

In this era of advanced information technology, the exploration and development of novel mechanisms to ensure information confidentiality have consistently captivated the attention of upcoming researchers. In this article, we present a pioneering approach that combines DNA sequencing with a four-dimensional (4D) hyperchaotic map to bolster the security of digital information. Our primary focus is on the design of a robust and secure scheme for encrypting color images, leveraging DNA cryptography and hyperchaos. By extracting three distinct DNA sequences, we generate encryption keys through the integration of DNA computing and 4D hyperchaotic maps. Notably, these keys are intricately linked to the plaintext and vary with any alterations in the input. Consequently, the proposed encryption method stands resilient against an array of potential cryptographic attacks. To gauge the algorithm's security, we subject it to rigorous standard statistical analysis. Our findings underscore the efficiency and robustness of the proposed framework, establishing its potential for facilitating secure communication.

Keywords: Chaos; DNA; Image encryption; Logistic map.