Telomere length as a modifier in the relationship between phthalate metabolites exposure and glucose homeostasis

Environ Pollut. 2024 Mar 1:344:123309. doi: 10.1016/j.envpol.2024.123309. Epub 2024 Jan 6.

Abstract

Given the rising concern over the potential impact of environmental factors on metabolic heath, we conducted a cross-sectional analysis among 645 adults aged 20 and older in the National Health and Nutrition Examination Survey (NHANES), examining the association between nine phthalate metabolites (Mono-n-butyl phthalate (MBP), Mono-ethyl phthalate (MEP), Mono-(2-ethyl)-hexyl phthalate (MEHP), Mono-benzyl phthalate (MBzP), Mono-n-methyl phthalate (MnMP), Mono-(3-carboxy propyl) phthalate (MCPP), Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), Mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), Mono-isobutyl phthalate (MiBP)) and six glucose homeostasis indices (fasting glucose, fasting insulin, hemoglobin A1C (HbA1C), homeostatic model assessment of insulin resistance (HOMA-IR), single Point Insulin Sensitivity Estimator (SPISE), and HOMA-β). Latent Class Analysis identified three phthalate metabolites exposure patterns: high MEP-low MEOHP (n = 282), high MBzP-low MEHHP (n = 214), and high MEHHP, MEOHP (n = 149). The high MBzP-low MEHHP and high MEHHP, MEOHP, versus the high MEP-low MEOHP, exposure groups showed significantly higher levels of fasting insulin (β = 0.126, 95% CI: 0.023-0.228), SPISE (β = 0.091, 95% CI: 0.018-0.164), and HOMA-IR (β = 0.091, 95% CI: 0.018-0.164). In the shorter telomere length group, high MEHHP, MEOHP exposure showed an increase in SPISE levels (β = 0.153, 95% CI: 0.037-0.269), while in the overweight/obese subgroup, high MEHHP, MEOHP exposure was significantly positively associated with HOMA-IR (β = 0.392, 95% CI: 0.150-0.735). Bayesian kernel machine regression analyses showed positive associations between higher combined phthalate exposure and increased glucose homeostasis indices (fasting glucose, HbA1C, fasting insulin, SPISE, and HOMA-IR). The quantile of g-calculation analysis also supported the positive associations with HbA1C, HOMA-IR, and fasting insulin. Our findings indicate that phthalate exposure was positively associated with glucose homeostasis indices, which strengthen the call for proactive measures to reduce phthalate exposure and mitigate potential risks to glucose metabolism.

Keywords: Bayesian kernel machine regression; Glucose homeostasis; Latent class analysis; Phthalate metabolites; Telomere length.

MeSH terms

  • Bayes Theorem
  • Cross-Sectional Studies
  • Environmental Exposure
  • Environmental Pollutants* / analysis
  • Glucose
  • Homeostasis
  • Insulins*
  • Nutrition Surveys
  • Phthalic Acids* / metabolism
  • Telomere

Substances

  • phthalic acid
  • mono-benzyl phthalate
  • Phthalic Acids
  • Glucose
  • Insulins
  • Environmental Pollutants