The effect of reef morphology on coral recruitment at multiple spatial scales

Proc Natl Acad Sci U S A. 2024 Jan 23;121(4):e2311661121. doi: 10.1073/pnas.2311661121. Epub 2024 Jan 8.

Abstract

Coral reefs are in decline worldwide, making it increasingly important to promote coral recruitment in new or degraded habitat. Coral reef morphology-the structural form of reef substrate-affects many aspects of reef function, yet the effect of reef morphology on coral recruitment is not well understood. We used structure-from-motion photogrammetry and airborne remote sensing to measure reef morphology (rugosity, curvature, slope, and fractal dimension) across a broad continuum of spatial scales and evaluated the effect of morphology on coral recruitment in three broadcast-spawning genera. We also measured the effect of other environmental and biotic factors such as fish density, adult coral cover, hydrodynamic larval import, and depth on coral recruitment. All variables combined explained 72% of coral recruitment in the study region. Coarse reef rugosity and curvature mapped at ≥2 m spatial resolution-such as large colonies, knolls, and boulders-were positively correlated with coral recruitment, explaining 22% of variation in recruitment. Morphology mapped at finer scales (≤32 cm resolution) was not significant. Hydrodynamic larval import was also positively related to coral recruitment in Porites and Montipora spp., and grazer fish density was linked to significantly lower recruitment in all genera. In addition, grazer density, reef morphology, and hydrodynamic import had differential effects on coral genera, reflecting genus-specific life history traits, and model performance was lower in gonochoric species. Overall, coral reef morphology is a key indicator of recruitment potential that can be detected by remote sensing, allowing potential larval sinks to be identified and factored into restoration actions.

Keywords: coral; recruitment; remote sensing; restoration; rugosity.

MeSH terms

  • Animals
  • Anthozoa*
  • Coral Reefs
  • Fractals
  • Hydrodynamics
  • Larva