The curious case of CO2 dissociation on Cu(110)

J Chem Phys. 2024 Jan 14;160(2):024702. doi: 10.1063/5.0176642.

Abstract

Dissociation of CO2 on copper surfaces is an important model system for understanding the elementary steps in catalytic conversion of CO2 to methanol. Using molecular beam-surface scattering methods, we measure the initial dissociation probabilities (S0) of CO2 on a flat, clean Cu(110) surface under ultrahigh vacuum conditions. The observed S0 ranges from 3.9 × 10-4 to 1.8 × 10-2 at incidence energies of 0.64-1.59 eV. By extrapolating the trend observed in the incidence energy dependence of S0, we estimate the lower limit of the dissociation barrier on terrace sites to be around 2 eV. We discuss these results in the context of what is known from previous studies on this system using different experiments and theoretical/computational methods. These findings are anticipated to be valuable for correctly understanding the elementary steps in CO2 dissociation on Cu surfaces.