A bi-cortical neuroprosthesis to modulate locomotion after incomplete spinal cord injury

Sci Prog. 2023 Oct-Dec;106(4):368504231212788. doi: 10.1177/00368504231212788.

Abstract

Neuroprosthetic strategies seek to immediately alleviate deficits and reinstate voluntary control of movement. To facilitate recovery, it is crucial to gain a comprehensive understanding of the mechanisms involved in the return of intentional movement. Nevertheless, the precise relationship between the resurgence of cortical commands and the recovery of locomotion remains somewhat elusive. In the study conducted by Duguay, Bonizzato, Delivet-Mongrain, Fortier-Lebel and Martinez, we introduced a neuroprosthesis designed to deliver precise bi-cortical stimulation in a clinically relevant contusive spinal cord injury model. We conducted experiments in both healthy and spinal cord injured cats, where we fine-tuned the timing, duration, amplitude, and site of stimulation to modulate hindlimb locomotor output. In healthy cats, we observed a wide range of motor programs. However, after spinal cord injury, the induced hindlimb movements became highly stereotyped but were effective in modulating gait and reducing bilateral foot dragging. These results suggest that the neural basis for motor recovery traded off selectivity for effectiveness. Through a series of longitudinal assessments, we found that the restoration of locomotion following spinal cord injury was closely linked to the recovery of the descending neural drive. This underscores the importance of directing rehabilitation interventions toward the cortical target. The study results are discussed in terms of their impact and limitations.

Keywords: animal model; locomotion; motor cortex; neuroprosthetics; neurostimulation; recovery; rehabilitation; spinal cord injury.

MeSH terms

  • Animals
  • Cats
  • Locomotion*
  • Spinal Cord Injuries* / therapy