In vivo validation of late-onset Alzheimer's disease genetic risk factors

bioRxiv [Preprint]. 2023 Dec 24:2023.12.21.572849. doi: 10.1101/2023.12.21.572849.

Abstract

Introduction: Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action.

Methods: Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE4 and Trem2*R47H. Potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts.

Results: We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes.

Discussion: These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics.

Keywords: APOE4; Abca7; Alzheimer’s disease; Animal models; Mthfr; Plcg2; Preclinical; Transcriptomic analysis; Trem2.

Publication types

  • Preprint