Enzyme Fragment Complementation Driven by Nucleic Acid Hybridization

bioRxiv [Preprint]. 2023 Dec 19:2023.12.19.572427. doi: 10.1101/2023.12.19.572427.

Abstract

A modified protein fragment complementation assay has been designed and validated as a gain-of-signal biosensor for nucleic acid:nucleic acid interactions. The assay uses fragments of NanoBiT, the split luciferase reporter enzyme, that are esterified at their C-termini to steramers, sterol-modified oligodeoxynucleotides. The Drosophila hedgehog autoprocessing domain, DHhC, served as a self-cleaving catalyst for these bioconjugations. In the presence of ssDNA or RNA with segments complementary to the steramers and adjacent to one another, the two NanoBiT fragments productively associate, reconstituting NanoBiT enzyme activity. NanoBiT luminescence in samples containing nM ssDNA or RNA template exceeded background by 30-fold and as high as 120-fold depending on assay conditions. A unique feature of this detection system is the absence of a self-labeling domain in the NanoBiT bioconjugates. Eliminating that extraneous bulk broadens the detection range from short oligos to full-length mRNA.

Publication types

  • Preprint