Combined antibacterial effect of 460 nm light-emitting diode illumination and chitosan against Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes on fresh-cut melon, and the impact of combined treatment on fruit quality

Food Sci Biotechnol. 2023 May 10;33(1):191-202. doi: 10.1007/s10068-023-01324-y. eCollection 2024 Jan.

Abstract

This study evaluated the combined antibacterial effect of 460 nm LED illumination and chitosan on Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes on fresh-cut melon surface and its impact on the quality of melon at a total dose of 2.4 kJ/cm2 at 4 and 10 °C. Results showed that the antibacterial effect of LED illumination in combination with chitosan (0.5 and 1.0%) was much better than that of LED illumination alone, showing their synergistic effect. Among the pathogens, L. monocytogenes was the most susceptible pathogen to LED illumination. Although the color of melons became paler after LED illumination, there was little to no change in ascorbic acid content, total flavonoid content, or antioxidant capacity of the illuminated fruits compared with non-illuminated fruits. Thus, these results suggest that chitosan-mediated 460 nm LED illumination could be applied to inactivate foodborne pathogens on fresh-cut melons during storage at food establishments.

Keywords: 460 nm light-emitting diode chitosan; Combined antibacterial effect; Foodborne pathogens; Fresh-cut melon.