Inhibition of Sirt3 activates the cGAS-STING pathway to aggravate hepatocyte damage in hepatic ischemia-reperfusion injury mice

Int Immunopharmacol. 2024 Feb 15:128:111474. doi: 10.1016/j.intimp.2023.111474. Epub 2024 Jan 6.

Abstract

Hepatic ischemia-reperfusion injury (IRI) typically manifests during subtotal hepatectomy and inflicts substantial damage to liver function in the perioperative period. Although the central role of cGAS-STING-mediated immune inflammation in hepatocyte damage during hepatic IRI is acknowledged, the precise regulatory mechanisms remain elusive. The current study aims to elucidate how Sirt3 inhibition activates the cGAS-STING pathway and exacerbates hepatocyte damage in hepatic IRI. We established both in vivo and in vitro models by creating hepatic IRI mice model and subjecting AML-12 hepatocyte cell lines to oxygen-glucose deprivation/reperfusion (OGD/R). Hepatic IRI compromised liver and mitochondrial function while elevating cytosolic mitochondrial DNA (mtDNA) levels in hepatocytes. Additionally, both in vivo hepatic IRI and in vitro OGD/R induced increased phosphorylation and activation of cGAS, STING, and IRF3, accompanied by heightened levels of pro-inflammatory factors, including TNF-α, IL-1β, and type I interferon (IFN-β). Importantly, knockdown of cGAS or STING through siRNA effectively attenuated hepatic IRI-induced inflammation and ameliorated liver function in both experimental settings, underscoring the dynamic involvement of the cGAS-STING pathway in hepatic IRI-induced inflammation. Furthermore, we observed a significant reduction in Sirt3 expression following hepatic IRI, both in vivo and in vitro. Then we generated Sirt3-deficient mice and applied Sirt3 knockdown in AML-12 hepatocytes. Notably, Sirt3 deficiency led to increased phosphorylation and activation of cGAS, STING, and IRF3, coupled with elevated TNF-α, IL-1β, and IFN-β levels in both in vivo and in vitro conditions. Moreover, upon silencing various downstream targets of Sirt3, such as transcription factors Sp1, Pu1, and p65, we observed that specifically knocking down p65 in AML-12 hepatocytes reduced cGAS mRNA levels. Co-immunoprecipitation assays confirmed a direct interaction between Sirt3 and p65. The absence of Sirt3 significantly increased nuclear translocation of p65 in mice, whereas Sirt3 knockdown in AML-12 hepatocytes heightened nuclear translocation of p65. ChIP-PCR assays demonstrated that Sirt3 deficiency notably enhanced the binding of p65 to two cGAS promoters, ultimately promoting cGAS transcription. Collectively, our results underscored that inhibition of Sirt3 activates the cGAS-STING pathway to aggravate hepatocyte damage by increasing cytosolic mtDNA and promoting nuclear translocation of p65 to promote cGAS transcription in hepatic IRI. These findings hold promise for potential therapeutic interventions in hepatic IRI by targeting the Sirt3-cGAS-STING axis, offering new avenues for the development of clinical strategies to mitigate liver damage during the perioperative period.

Keywords: Hepatic ischemia–reperfusion injury; Inflammation; Nuclear translocation; Sirt3; cGAS-STING; p65.

MeSH terms

  • Animals
  • DNA, Mitochondrial
  • Hepatocytes / metabolism
  • Inflammation / metabolism
  • Leukemia, Myeloid, Acute*
  • Liver Diseases*
  • Mice
  • Nucleotidyltransferases / metabolism
  • Reperfusion Injury* / metabolism
  • Signal Transduction
  • Sirtuin 3* / metabolism
  • Tumor Necrosis Factor-alpha

Substances

  • Sirtuin 3
  • Tumor Necrosis Factor-alpha
  • Nucleotidyltransferases
  • DNA, Mitochondrial
  • Sirt3 protein, mouse