Middle Jurassic insect mines on gymnosperms provide missing links to early mining evolution

New Phytol. 2024 Jan 7. doi: 10.1111/nph.19517. Online ahead of print.

Abstract

We investigated the mining mode of insect feeding, involving larval consumption of a plant's internal tissues, from the Middle Jurassic (165 million years ago) Daohugou locality of Northeastern China. Documentation of mining from the Jurassic Period is virtually unknown, and results from this time interval would address mining evolution during the temporal gap of mine-seed plant diversifications from the previous Late Triassic to the subsequent Early Cretaceous. Plant fossils were examined with standard microscopic procedures for herbivory and used the standard functional feeding group-damage-type system of categorizing damage. All fossil mines were photographed and databased. We examined 2014 plant specimens, of which 27 occurrences on 14 specimens resulted in eight, new, mine damage types (DTs) present on six genera of bennettitalean, ginkgoalean, and pinalean gymnosperms. Three conclusions emerge from this study. First, these mid-Mesozoic mines are morphologically conservative and track plant host anatomical structure rather than plant phylogeny. Second, likely insect fabricators of these mines were three basal lineages of polyphagan beetles, four basal lineages of monotrysian moths, and a basal lineage tenthredinoid sawflies. Third, the nutrition hypothesis, indicating that miners had greater access to nutritious, inner tissues of new plant lineages, best explains mine evolution during the mid-Mesozoic.

Keywords: Bennettitales; Daohugou Formation; Jurassic; endophagous herbivory; leaf venation; mining insects; nutrition hypothesis.