Modified silica-based double-layered hydrophobic-coated stainless steel mesh and its application for oil/seawater separation

Sci Rep. 2024 Jan 6;14(1):731. doi: 10.1038/s41598-024-51264-8.

Abstract

A double-layered hydrophobic-coated stainless steel mesh (CSSM) was successfully prepared by vapor deposition of polydimethylsiloxane (PDMS) to form aerosol silica (SiO2) particles on SSM followed by coating with the in situ modified SiO2 generated in the natural rubber (NR) latex for use in oil/seawater separation. The in situ SiO2 particles were modified with octyltriethoxysilane (OTES) or hexadecyltrimethoxysilane (HDTMS). Transmission electron microscopy, 29Si solid-state nuclear magnetic resonance, and Fourier transform infrared spectroscopy were used to determine the structure of the in situ modified SiO2 generated in the NR latex. Scanning electron microscopy and water contact angle analyses were applied to characterize the morphology and hydrophobicity of the CSSM, respectively. The presence of aerosol SiO2 particles from PDMS and in situ modified SiO2 by OTES (MSi-O) or HDTMS (MSi-H) generated in the NR could enhance the surface roughness and hydrophobicity of the CSSM. The hydrophobic CSSM was then applied for the separation of chloroform/seawater and crude oil/seawater mixtures. A high separation efficiency (up to 99.3%) with the PDMS/NR/MSi-H CSSM was obtained and the mesh was reusable for up to 20 cycles.