A simple, static and stage mounted direct electron detector based electron backscatter diffraction system

Micron. 2024 Mar:178:103582. doi: 10.1016/j.micron.2023.103582. Epub 2023 Dec 22.

Abstract

To engineer the next generation of advanced materials we must understand their microstructure, and this requires microstructural characterization. This can be achieved through the collection of high contrast, data rich, and insightful microstructural maps. Electron backscatter diffraction (EBSD) has emerged as a popular tool available within the scanning electron microscope (SEM), where maps are realized through the repeat capture and analysis of Kikuchi diffraction patterns. Typical commercial EBSD systems require large and sophisticated detectors that are mounted on the side of the SEM vacuum chamber which can be limiting in terms of widespread access to the technique. In this work, we present an alternative open-hardware solution based upon a compact EBSD system with a simple, static geometry that uses an off-the-shelf direct electron detector co-mounted with a sample. This simple stage is easy to manufacture and improves our knowledge of the diffraction geometry significantly. Microscope and detector control is achieved through software application programming interface (API) integration. After pattern capture, analysis of the diffraction patterns is performed using open-source analysis within AstroEBSD. To demonstrate the potential of this set up, we present two simple EBSD experiments using a line scan and area mapping. We hope that the present system can inspire simpler EBSD system design for widespread access to the EBSD technique and promote the use of open-source software and hardware in the workflow of EBSD experiments.

Keywords: Direct electron detection; Electron backscattered diffraction (EBSD).