Kagome Quantum Oscillations in Graphene Superlattices

Nano Lett. 2024 Jan 17;24(2):601-606. doi: 10.1021/acs.nanolett.3c03524. Epub 2024 Jan 5.

Abstract

Electronic spectra of solids subjected to a magnetic field are often discussed in terms of Landau levels and Hofstadter-butterfly-style Brown-Zak minibands manifested by magneto-oscillations in two-dimensional electron systems. Here, we present the semiclassical precursors of these quantum magneto-oscillations which appear in graphene superlattices at low magnetic field near the Lifshitz transitions and persist at elevated temperatures. These oscillations originate from Aharonov-Bohm interference of electron waves following open trajectories that belong to a kagome-shaped network of paths characteristic for Lifshitz transitions in the moire superlattice minibands of twistronic graphenes.

Keywords: electronic band structure; graphene; magneto-transport; moiré superlattice; quantum oscillations.