NMR detection of the strained metallacycles in organolithiums: theoretical study

Org Biomol Chem. 2024 Jan 31;22(5):982-989. doi: 10.1039/d3ob01916k.

Abstract

For the first time through quantum chemistry methods, the effective use of 1JCLi spin-spin coupling constants as descriptors for assessing the formation of strained metallacycles is demonstrated. Both acyclic organolithiums and 3- to 7-membered metallacycles are examined. 80 organolithium compounds, including both monomeric and dimeric species, with ligands containing fluorine, nitrogen, oxygen, and carbon (in the form of carbanions), are tested. In general, the 1JCLi values below 12 Hz for monomeric species and below 6 Hz for dimeric species serve as clear indicators of strained monomeric metallacycle formation (for 6Li nuclei). The primary contributor to the overall 1JCLi value is the Fermi-contact term, which correlates directly with the carbon-lithium interatomic distance and allows to distinguish between dimers and monomers.