The Integration of Two-Dimensional Materials and Ferroelectrics for Device Applications

ACS Nano. 2024 Jan 23;18(3):1778-1819. doi: 10.1021/acsnano.3c05711. Epub 2024 Jan 5.

Abstract

In recent years, there has been growing interest in functional devices based on two-dimensional (2D) materials, which possess exotic physical properties. With an ultrathin thickness, the optoelectrical and electrical properties of 2D materials can be effectively tuned by an external field, which has stimulated considerable scientific activities. Ferroelectric fields with a nonvolatile and electrically switchable feature have exhibited enormous potential in controlling the electronic and optoelectronic properties of 2D materials, leading to an extremely fertile area of research. Here, we review the 2D materials and relevant devices integrated with ferroelectricity. This review starts to introduce the background about the concerned themes, namely 2D materials and ferroelectrics, and then presents the fundamental mechanisms, tuning strategies, as well as recent progress of the ferroelectric effect on the optical and electrical properties of 2D materials. Subsequently, the latest developments of 2D material-based electronic and optoelectronic devices integrated with ferroelectricity are summarized. Finally, the future outlook and challenges of this exciting field are suggested.

Keywords: ferroelectric devices; ferroelectrics; field-effect transistors; nonvolatile memories; optoelectronics; sliding ferroelectrics; synaptic devices; two-dimensional materials.

Publication types

  • Review