Effect of Temperature on the OH-Stretching Bands of the Methanol Dimer

J Phys Chem A. 2024 Jan 18;128(2):392-400. doi: 10.1021/acs.jpca.3c06456. Epub 2024 Jan 5.

Abstract

We present a conceptually simple model for understanding the significant spectral changes that occur with the temperature in the infrared spectra of hydrogen-bound complexes. We have measured room-temperature spectra of the methanol dimer and two deuterated isotopologues in the OH(D)-stretching region. We correctly predict spectral changes observed in the gas phase for the bound OH stretch in the methanol dimer from jet-cooled to room temperature and corroborate this with experimental and theoretical results for deuterated isotopologues. The origin of the observed spectral features is explained based on a reduced-dimensional vibrational model, which includes the two high-frequency OH stretches, the two methyl torsions, and the six intermolecular low-frequency vibrations. Key to the success of the model is a new coordinate definition to describe the intrinsic large-amplitude curvilinear motion of low-frequency vibrations. Despite the deceivingly simple appearance of the room temperature bound OH-stretching fundamental band, it consists of ∼107 vibrational transitions.