Increasing the functional density of threose nucleic acid

RSC Chem Biol. 2023 Oct 25;5(1):41-48. doi: 10.1039/d3cb00159h. eCollection 2024 Jan 3.

Abstract

Chemical strategies that augment genetic polymers with amino acid residues that are overrepresented on the paratope surface of an antibody offer a promising route for enhancing the binding properties of nucleic acid aptamers. Here, we describe the chemical synthesis of α-l-threofuranosyl cytidine nucleoside triphosphate (tCTP) carrying either a benzyl or phenylpropyl side chain at the pyrimidine C-5 position. Polymerase recognition studies indicate that both substrates are readily incorporated into a full-length α-l-threofuranosyl nucleic acid (TNA) product by extension of a DNA primer-template duplex with an engineered TNA polymerase. Similar primer extension reactions performed using nucleoside triphosphate mixtures containing both C-5 modified tCTP and C-5 modified tUTP substrates enable the production of doubly modified TNA strands for a panel of 20 chemotype combinations. Kinetic measurements reveal faster on-rates (kon) and tighter binding affinity constants (Kd) for engineered versions of TNA aptamers carrying chemotypes at both pyrimidine positions as compared to their singly modified counterparts. These findings expand the chemical space of evolvable non-natural genetic polymers by offering a path for improving the quality of biologically stable TNA aptamers for future clinical applications.