Adaptive Force of hamstring muscles is reduced in patients with knee osteoarthritis compared to asymptomatic controls

BMC Musculoskelet Disord. 2024 Jan 5;25(1):34. doi: 10.1186/s12891-023-07133-y.

Abstract

Background: Quadriceps strength deficits are known for patients with knee osteoarthritis (OA), whereas findings on hamstrings are less clear. The Adaptive Force (AF) as a special neuromuscular function has never been investigated in OA before. The maximal adaptive holding capacity (max. isometric AF; AFisomax) has been considered to be especially vulnerable to disruptive stimuli (e.g., nociception). It was hypothesized that affected limbs of OA patients would show clear deficits in AFisomax.

Methods: AF parameters and the maximal voluntary isometric contraction (MVIC) of hamstrings were assessed bilaterally comparing 20 patients with knee OA (ART) vs. controls (CON). AF was measured by a pneumatically driven device. Participants were instructed to maintain a static position despite an increasing load of the device. After reaching AFisomax, the hamstrings merged into eccentric action whereby the force increased further to the maximum (AFmax). MVIC was recorded before and after AF trials. Mixed ANOVA was used to identify differences between and within ART and CON (comparing 1st and 2nd measured sides).

Results: AFisomax and the torque development per degree of yielding were significantly lower only for the more affected side of ART vs. CON (p ≤ 0.001). The percentage difference of AFisomax amounted to - 40%. For the less affected side it was - 24% (p = 0.219). MVIC and AFmax were significantly lower for ART vs. CON for both sides (p ≤ 0.001). Differences of MVIC between ART vs. CON amounted to - 27% for the more, and - 30% for the less affected side; for AFmax it was - 34% and - 32%, respectively.

Conclusion: The results suggest that strength deficits of hamstrings are present in patients with knee OA possibly attributable to nociception, generally lower physical activity/relief of lower extremities or fear-avoidance. However, the more affected side of OA patients seems to show further specific impairments regarding neuromuscular control reflected by the significantly reduced adaptive holding capacity and torque development during adaptive eccentric action. It is assumed that those parameters could reflect possible inhibitory nociceptive effects more sensitive than maximal strengths as MVIC and AFmax. Their role should be further investigated to get more specific insights into these aspects of neuromuscular control in OA patients. The approach is relevant for diagnostics also in terms of severity and prevention.

Keywords: Adaptive Force (AF); Hamstrings; Holding capacity; Isometric eccentric contraction; Knee flexor muscles; Knee osteoarthritis; Maximal isometric Adaptive Force; Maximal voluntary isometric contraction; Neuromuscular function; Strength deficits.

MeSH terms

  • Hamstring Muscles* / physiology
  • Humans
  • Isometric Contraction / physiology
  • Knee Joint
  • Lower Extremity
  • Muscle, Skeletal
  • Osteoarthritis, Knee* / diagnosis
  • Torque