7.56-W continuous-wave Pr3+-based green laser via managing thermally induced effects

Opt Express. 2024 Jan 1;32(1):959-968. doi: 10.1364/OE.511076.

Abstract

Blue-laser-diode-pumped Pr3+-based continuous-wave (CW) green lasers have aroused growing research interest in developing optoelectronic applications and deep ultraviolet laser sources due to their simple and compact structural design. However, the obstacle of thermally induced effects limits the available output power of Pr3+-based green lasers. Herein, combined with the theoretical analysis and experimental feedback, we effectively adjust the heat distribution inside the Pr3+:LiYF4 gain crystal by optimizing the crystal dimension and doping concentration. The excellent mode matching between the pump and green lasers is achieved under the consideration of thermally induced effects, yielding a maximum CW output power of 7.56 W. To the best of our knowledge, this is the largest output power of Pr3+-based CW green lasers so far. Moreover, the obtained green laser demonstrates excellent output stability (RMS = 1.27%) and beam quality (M2 = 1.30 × 1.12) under the lasing operation state with the maximum output power. We hope that this study can provide a feasible paradigm for developing blue-laser-diode-pumped visible lasers, especially for high-power lasers.