Engineering of Ultra-Thin Layer of MIL-125(Ti) Nanosheet\Zn-Tetracarboxy-Phthalocyanine S-Scheme Heterojunction as Photocatalytic CO2 Reduction Catalyst

Small. 2024 Jan 4:e2309094. doi: 10.1002/smll.202309094. Online ahead of print.

Abstract

Metal-organic frameworks (MOFs) with ultrathin 2D structure have attracted remarkable attention in photocatalytic application owing to the accessibility of abundant active sites on the surface. But high charge recombination results in poor photocatalytic activity. Herein, the synthesis of ultrathin MIL-125(Ti) nanosheets is reported with a thickness of 1.3 nm through a simple chemical reaction route of precursor solution aging and subsequent solvothermal process for photocatalytic CO2 production. The maximal CO evolution rate achieves 200.8 µmol g-1 h-1 , which is prominently higher than that (78.6 µmol g-1 h-1 ) of the bulk MIL-125(Ti) counterpart. Furthermore, the structurally stable Zn (II) tetracarboxy phthalocyanine (ZnTcPc) molecules assembly on ultrathin MIL-125(Ti) nanosheet (NS) to form MIL-125(Ti) NS\ZnTcPc S-scheme heterojunction through the strong interaction between the Ti3+ in MIL-125(Ti) and the COOH in ZnTcPc. The introduction of ZnTcPc greatly extends light absorption range and increases charge separation rate. The experimental and density functional theory calculation results validate that the MIL-125(Ti) NS\ZnTcPc S-scheme heterojunction can favor CO2 adsorption and effectively depress the formation energy of the intermediates, achieving a high CO evolution rate of 450.8 µmol g-1 h-1 . This work provides a strategy of engineering 2D MOF-based heterostructure systems for photocatalytic application.

Keywords: MIL-125(Ti) nanosheets; Zn (II) tetracarboxy phthalocyanine; heterojunction; photocatalysis.