Development of Fluorescent Co (II)-Integrated Carbon Dots and Their Application as a Off-On Mesotrione Detection Sensor

ACS Omega. 2023 Dec 13;8(51):49115-49128. doi: 10.1021/acsomega.3c07171. eCollection 2023 Dec 26.

Abstract

A very simple mesotrione-sensing medium with enhanced sensitivity detection limits has been proposed. A renovated hydrothermal method was adopted for synthesizing fluorescent carbon dots from ethylenediamine and glucose using a Teflon-lined simple autoclave in a GC oven. The resultant carbon dots were characterized via TEM, FTIR, UV-vis, particle size distribution, and EDX and evaluated in a fluorimeter as the sensing medium for mesotrione detection. The binding approach of the Co (II)-integrated glucose-bound carbon dots toward mesotrione is selective, making them an effective sensor for the real sample applications, where majority of the coexisting substances showed insignificant interference effect. Formation of the metastable state due to the molecular interaction between carbon dots and Co (II) resulted in fluorescence quenching at 456 nm. Enhancement in the fluorescence intensity occurred when mesotrione was added in the concentration range of 0.2-5.0 μg mL-1, with a limit of detection, limit of quantification, standard deviation, and relative standard deviation of 0.054, 0.164, 0.00082 μg mL-1, and 0.682%, respectively. Mesotrione determination was demonstrated in soil, water, and tomato samples with recoveries in the range of 95.38-104.7%. The selectivity of the sensor was found to be good enough when checked for the complex tomato sample spiked with different pesticides of the triketone family having structural similarities to mesotrione.