Glucagon-Like Peptide Receptor Agonist Inhibits Angiotensin II-Induced Proliferation and Migration in Vascular Smooth Muscle Cells and Ameliorates Phosphate-Induced Vascular Smooth Muscle Cells Calcification

Diabetes Metab J. 2024 Jan;48(1):83-96. doi: 10.4093/dmj.2022.0363. Epub 2024 Jan 3.

Abstract

Backgruound: Glucagon-like peptide-1 receptor agonist (GLP-1RA), which is a therapeutic agent for the treatment of type 2 diabetes mellitus, has a beneficial effect on the cardiovascular system.

Methods: To examine the protective effects of GLP-1RAs on proliferation and migration of vascular smooth muscle cells (VSMCs), A-10 cells exposed to angiotensin II (Ang II) were treated with either exendin-4, liraglutide, or dulaglutide. To examine the effects of GLP-1RAs on vascular calcification, cells exposed to high concentration of inorganic phosphate (Pi) were treated with exendin-4, liraglutide, or dulaglutide.

Results: Ang II increased proliferation and migration of VSMCs, gene expression levels of Ang II receptors AT1 and AT2, proliferation marker of proliferation Ki-67 (Mki-67), proliferating cell nuclear antigen (Pcna), and cyclin D1 (Ccnd1), and the protein expression levels of phospho-extracellular signal-regulated kinase (p-Erk), phospho-c-JUN N-terminal kinase (p-JNK), and phospho-phosphatidylinositol 3-kinase (p-Pi3k). Exendin-4, liraglutide, and dulaglutide significantly decreased the proliferation and migration of VSMCs, the gene expression levels of Pcna, and the protein expression levels of p-Erk and p-JNK in the Ang II-treated VSMCs. Erk inhibitor PD98059 and JNK inhibitor SP600125 decreased the protein expression levels of Pcna and Ccnd1 and proliferation of VSMCs. Inhibition of GLP-1R by siRNA reversed the reduction of the protein expression levels of p-Erk and p-JNK by exendin-4, liraglutide, and dulaglutide in the Ang II-treated VSMCs. Moreover, GLP-1 (9-36) amide also decreased the proliferation and migration of the Ang II-treated VSMCs. In addition, these GLP-1RAs decreased calcium deposition by inhibiting activating transcription factor 4 (Atf4) in Pi-treated VSMCs.

Conclusion: These data show that GLP-1RAs ameliorate aberrant proliferation and migration in VSMCs through both GLP-1Rdependent and independent pathways and inhibit Pi-induced vascular calcification.

Keywords: Angiotensin II; Cell migration inhibition; Cell proliferation; Glucagon-like peptide 1; Muscle, smooth, vascular.

MeSH terms

  • Angiotensin II / metabolism
  • Angiotensin II / pharmacology
  • Cell Proliferation
  • Diabetes Mellitus, Type 2* / metabolism
  • Exenatide / pharmacology
  • Glucagon-Like Peptide Receptors
  • Humans
  • Liraglutide / pharmacology
  • Muscle, Smooth, Vascular / metabolism
  • Phosphates / metabolism
  • Phosphates / pharmacology
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphatidylinositol 3-Kinases / pharmacology
  • Proliferating Cell Nuclear Antigen / metabolism
  • Proliferating Cell Nuclear Antigen / pharmacology
  • Vascular Calcification* / metabolism

Substances

  • Angiotensin II
  • Exenatide
  • Liraglutide
  • Proliferating Cell Nuclear Antigen
  • Glucagon-Like Peptide Receptors
  • Phosphatidylinositol 3-Kinases
  • Phosphates