Diagnostic performance of wide-field optical coherence tomography angiography for high myopic glaucoma

Sci Rep. 2024 Jan 3;14(1):367. doi: 10.1038/s41598-023-49542-y.

Abstract

Diagnosing and monitoring glaucoma in high myopic (HM) eyes are becoming very important; however, it is challenging to diagnose this condition. This study aimed to evaluate the diagnostic ability of wide-field optical coherence tomography angiography (WF-OCTA) maps for the detection of glaucomatous damage in eyes with HM and to compare the diagnostic ability of WF-OCTA maps with that of conventional imaging approaches, including swept-source optical coherence tomography (SS-OCT) wide-field maps. In this retrospective observational study, a total 62 HM-healthy eyes and 140 HM eyes with open-angle glaucoma were included. Patients underwent a comprehensive ocular examination, including SS-OCT wide-field and 12 × 12 WF-OCTA scans. The WF-OCTA map represents the peripapillary and macular superficial vascular density maps. Glaucoma specialists determined the presence of glaucomatous damage in HM eyes by reading the WF-OCTA map and comparing its sensitivity and specificity with those of conventional SS-OCT images. The sensitivity and specificity of 12 × 12 WF-OCTA scans for HM-glaucoma diagnosis were 87.28% and 86.94%, respectively, while, the sensitivity and specificity of SS-OCT wide-field maps for HM-glaucoma diagnosis were 87.49% and 80.51%, respectively. The specificity of the WF-OCTA map was significantly higher than that of the SS-OCT wide-field map (p < 0.05). The sensitivity of the WF-OCTA map was comparable with that of the SS-OCT wide-field map (p = 0.078). The WF-OCTA map showed good diagnostic ability for discriminating HM-glaucomatous eyes from HM-healthy eyes. As a complementary method to an alternative imaging modality, WF-OCTA mapping can be a useful tool for the detection of HM glaucoma.

Publication types

  • Observational Study

MeSH terms

  • Angiography
  • Fluorescein Angiography / methods
  • Glaucoma* / diagnostic imaging
  • Glaucoma, Open-Angle* / diagnostic imaging
  • Humans
  • Myopia* / diagnostic imaging
  • Optic Disk*
  • Retinal Vessels
  • Tomography, Optical Coherence / methods