Gibberellin-mediated far-red light-induced leaf expansion in cucumber seedlings

Protoplasma. 2024 May;261(3):571-579. doi: 10.1007/s00709-023-01923-w. Epub 2024 Jan 3.

Abstract

Our experiments explored the effects of far-red (FR) light on cucumber (Cucumis sativus L. 'Zhongnong No. 26') seedling growth. Our results indicated that FR light significantly promoted the growth of cucumber seedlings. Specifically, it promoted the accumulation of shoot biomass and the elongation of internodes and leaves (except the first leaf at the bottom). Further analysis showed that FR light had no effect on the accumulation contents of abscisic acid (ABA) and auxin (IAA) in seedling leaves. Still, it significantly caused the increase of the gibberellin (GA3, GA4, and GA7) contents and the decrease of GA1 content, which suggested that the leaf expansion progress under FR light may be primarily related to GA. Therefore, the cucumber seedling leaf expansion response to GA was evaluated under different light sources. The exogenous spraying of different GA4/7 contents significantly promoted the leaf expansion of cucumber seedlings under white light, while the GA biosynthesis inhibitor paclobutrazol (PAC) significantly promoted the expression of GA hydrolytic genes (GA2ox2 and GA2ox4) and decreased the content of endogenous active GA, which inhibited the leaf expansion induced by FR light. As expected, the combination of exogenous GA4/7 and PAC restored the growth promotion effect of FR light on cucumber seedling leaves. It increased the contents of endogenous active GA (GA1, GA3, GA4, and GA7), and the expression trend in GA synthetic/hydrolytic-related genes was the opposite of that of PAC was applied alone. All of the above results indicated that FR light regulates leaf expansion progress in cucumber seedlings through GA.

Keywords: Cucumber; Far-red light; Hormone; Leaf.

MeSH terms

  • Cucumis sativus* / genetics
  • Gibberellins* / metabolism
  • Gibberellins* / pharmacology
  • Plant Leaves / metabolism
  • Red Light
  • Seedlings / metabolism

Substances

  • Gibberellins