Targeting HDACs for diffuse large B-cell lymphoma therapy

Sci Rep. 2024 Jan 2;14(1):289. doi: 10.1038/s41598-023-50956-x.

Abstract

Histone deacetylases (HDACs) are involved in tumorigenesis and progression, however, their role in diffuse large B-cell lymphoma (DLBCL) is not well understood. In this study, we examined the expression levels, mutations, and clinical significance of HDACs in DLBCL. Additionally, we investigated the therapeutic potential of Chidamide, a novel HDAC inhibitor, to provide scientific evidence for targeting HDACs in DLBCL patients. We extracted transcriptome data of DLBCLs--including 47 lymph node samples and 337 whole-blood-cell controls--from The Cancer Genome Atlas. Bioinformatic analyses of HDAC expression, mutation, and correlation with the clinical significance of DLBCL patients were performed with the Gene Expression Profiling Interactive Analysis, GENEMANIA, and web-based software including cBioPortal and WebGestalt. To examine the therapeutic effect of Chidamide, DLBCL cell lines (WSU-DLCL-2 and DB cells) were employed. Cell proliferation and apoptosis were analyzed with Cell Counting Kit-8 and flow cytometry assays. The impact of Chidamide treatment was also analyzed by RNA sequencing of treated DB cells. Western blot was used to explore the molecular mechanism of the cytotoxicity of Chidamide on DLBCL cell lines. The expression of some HDACs (HDAC1, 2, 3, 4, 6, 7, 8, and 9) were significantly higher in the lymph node samples of DLBCL than that in whole-blood-cell controls. Moreover, we found that the mutation rate of HDACs was also higher in DLBCL tissues, although the overall survival of DLBCL patients was not associated with HDAC expression. Chidamide was found to have a cytotoxic effect on DLBCL cells in a dose-dependent manner, while transcriptome analysis and western blot revealed that using it for treatment impacted several biological processes, including PI3K/AKT signaling, mTOR signaling, the cell cycle, and apoptosis pathways. Alterations of HDAC genes, including enhanced expression and mutations, are positively related to DLBCL. Targeting HDACs with specific inhibitors such as Chidamide may represent a potential therapeutic approach for DLBCL patients.

MeSH terms

  • Aminopyridines / pharmacology
  • Apoptosis / genetics
  • Cell Line, Tumor
  • Cell Proliferation
  • Histone Deacetylases* / metabolism
  • Humans
  • Lymphoma, Large B-Cell, Diffuse* / drug therapy
  • Lymphoma, Large B-Cell, Diffuse* / genetics
  • Lymphoma, Large B-Cell, Diffuse* / pathology
  • Phosphatidylinositol 3-Kinases / metabolism

Substances

  • N-(2-amino-5-fluorobenzyl)-4-(N-(pyridine-3-acrylyl)aminomethyl)benzamide
  • Histone Deacetylases
  • Phosphatidylinositol 3-Kinases
  • Aminopyridines