SMPD4 mediated sphingolipid metabolism regulates brain and primary cilia development

bioRxiv [Preprint]. 2023 Dec 16:2023.12.15.571873. doi: 10.1101/2023.12.15.571873.

Abstract

Genetic variants in multiple sphingolipid biosynthesis genes cause human brain disorders. A recent study collected patients from twelve unrelated families with variants in the gene SMPD4 , a neutral sphingomyelinase which metabolizes sphingomyelin into ceramide at an early stage of the biosynthesis pathway. These patients have severe developmental brain malformations including microcephaly and cerebellar hypoplasia. However, the mechanism of SMPD4 was not known and we pursued a new mouse model. We hypothesized that the role of SMPD4 in producing ceramide is important for making primary cilia, a crucial organelle mediating cellular signaling. We found that the mouse model has cerebellar hypoplasia due to failure of Purkinje cell development. Human induced pluripotent stem cells exhibit neural progenitor cell death and have shortened primary cilia which is rescued by adding exogenous ceramide. SMPD4 production of ceramide is crucial for human brain development.

Publication types

  • Preprint