Theoretical prediction of two-dimensional ferromagnetic Mn2X2 (X = As, Sb) with strain-controlled magnetocrystalline anisotropy

Phys Chem Chem Phys. 2024 Jan 17;26(3):2324-2331. doi: 10.1039/d3cp03691j.

Abstract

Two-dimensional (2D) magnetic materials with large and tunable magnetocrystalline anisotropy (MCA) provide unique opportunities to develop various spintronic devices. We, herein, propose an experimentally feasible 2D material platform, Mn2X2 (X = As, Sb), which is a family of intrinsic ferromagnet. Using first-principles calculations, we show that 2D Mn2X2 (X = As, Sb) with a robust ferromagnetic ground state exhibits not only a large perpendicular magnetic anisotropy (PMA), but also significant strain-driven modulation behaviors under external biaxial strain. The analysis of the results demonstrates that the dominant contribution to the change of MCA of Mn2As2 and Mn2Sb2 primarily arises from the Mn and Sb atoms, respectively. Moreover, we reveal that the underlying origin is the competitive mechanism for the spin-orbit coupling (SOC) between different orbitals and spin channels. These findings indicate that 2D Mn2X2 (X = As, Sb) provides a promising material platform for the next generation of ultra-low energy memory devices.