Wave separation analysis to assess cardiovascular alterations induced by sepsis

IEEE Trans Biomed Eng. 2024 Jan 1:PP. doi: 10.1109/TBME.2023.3349104. Online ahead of print.

Abstract

Objective: Sepsis induces a severe decompensation of arterial and cardiac functional properties, leading to important modifications of arterial blood pressure (ABP) waveform, not resolved by recommended therapy, as shown by previous works. The aim of this study is to quantify the changes in ABP waveform morphology and wave reflections during a long-term swine experiment of polymicrobial sepsis and resuscitation, to deepen the understanding of the cardiovascular response to standard resuscitation therapy.

Methods: We analyzed 14 pigs: polymicrobial sepsis was induced in 9 pigs followed by standard resuscitation and 5 pigs were treated as sham controls. Septic animals were studied at baseline (T1), after sepsis development (T2), and after 24h (T3) and 48h (T4) of therapy administration, and sham controls at the same time points. ABP and arterial blood flow were measured in the left and right carotid artery, respectively. Pulse wave analysis and wave separation techniques were used to estimate arterial input impedance, carotid characteristic impedance, forward and backward waves, indices of wave reflections such as reflection magnitude and reflection index, and augmentation index.

Results: Sepsis led to an acute alteration of ABP waveform passing from type A to type B or C; consistently, the reflection phenomena were significantly reduced. The resuscitation was successful in reaching targeted hemodynamic stability, but it failed in restoring a physiological blood propagation and reflection.

Conclusion: Septic pigs persistently showed altered reflected waves even after 48 hours of successful therapy according to guidelines, suggesting a persistent hidden cardiovascular disorder.

Significance: The proposed indices may be useful to unravel the complex cardiovascular response to therapy administration in septic patients and could potentially be used for risk stratification of patient deterioration. Whether alterations of blood propagation and reflection contribute to persisting organ dysfunction after hemodynamic stabilization should be further investigated.