A dual-functional cuprum coordination framework for high proton conduction and electrochemical dopamine detection

Mikrochim Acta. 2023 Dec 30;191(1):67. doi: 10.1007/s00604-023-06133-y.

Abstract

The present study selected 5, 5'-((6-(ethylamino)-1, 3, 5-triazine-2, 4-diyl) bis(azanediyl))diisophthalic acid (H4EATDIA) as ligand and an amino-functionalized cuprum-based MOF (EA-JUC-1000), successfully synthesized by microwave-assisted method, for proton conduction and dopamine sensing applications. In order to enhance the proton-conducting potential of EA-JUC-1000, the Brönsted acid (BA) encapsulated composites (BA@EA-JUC-1000) are dopped into chitosan (CS) to form a series of hybrid membranes (BA@EA-JUC-1000/CS). The impedance results display that the best proton conductivity of CF3SO3H@EA-JUC-1000/CS-8% reaches up to 1.23 × 10-3 S∙cm-1 at 338 K and ~ 98% RH, 2.6-fold than that of CS. Moreover, the EA-JUC-1000 is in-situ combined with reduced graphene oxide (rGO) (rGO/EA-JUC-1000), which makes EA-JUC-1000 have a wide detection range (0.1 ~ 500 μM) and a low limit of detection (50 nM), together with good anti-interference performance, reproducibility and repeatability. In addition, the electrochemical sensing method has been successfully applied to detect DA in bovine serum samples. The dual-functional MOF-based hybrid membrane and composites including proton conduction and DA sensing would provide an example of practical application for MOFs.

Keywords: Cyclic voltammetry; Dopamine; EA-JUC-1000; Electrochemical sensing; Hybrid membranes; MOFs; Proton conduction.