A Relationship between the Molecular Parity-Violation Energy and the Electronic Chirality Measure

J Phys Chem Lett. 2024 Jan 11;15(1):234-240. doi: 10.1021/acs.jpclett.3c03038. Epub 2023 Dec 30.

Abstract

When the weak forces producing parity-violating effects are taken into account, there is a tiny energy difference between the total electronic energies of two enantiomers (ΔEPV), which might be the key to understanding the evolution of the biological homochirality. We focus on the electronic chirality measure (ECM), a powerful descriptor based on the electronic charge density, for quantifying the chirality degree of a molecule, in a representative set of chiral molecules, together with their EPV energies. Our results show a novel, strong, and positive correlation between ΔEPV and ECM, supporting a subtle interplay between the weak forces acting within the nuclei of a given molecule and its chirality. These findings suggest that experimental investigations for molecular parity violation detection should consider molecules with ECM values as large as possible and may support that a chiral signature is imprinted on life by fundamental physics via the parity-violating weak interactions.