Supercritical CO2 mediated construction of aluminium waste recovered γ-Al2O3 impregnated Dracaena trifasciata biomass-derived carbon composite: A robust electrocatalyst for mutagenic pollutant detection

J Colloid Interface Sci. 2024 Apr:659:71-81. doi: 10.1016/j.jcis.2023.12.117. Epub 2023 Dec 22.

Abstract

Inspired by the waste-to-wealth concept, we have recovered the gamma phase aluminium oxide nanoparticles (γ-Al2O3 NPs) from waste aluminium (Al) foils and fabricated a composite with Dracaena trifasciata biomass-derived activated carbon matrix (DT-AC) using supercritical carbon-di-oxide (SC-CO2) pathway. The prepared samples are characterized altogether by various micro- and spectroscopic analyses. Based on the results, the recovered γ-Al2O3 NPs are well impregnated in the DT-AC surface by the action of the microbubble effect from the SC-CO2. The higher D-band and ID/IG value of 1.07 in the Al2O3/DT-AC nanocomposite indicate increased defects and the amorphous nature of the carbon materials. The effect of scan rate (ν) demonstrated greater linearity in ν1/2 vs peak current in the electrochemical detection study of the mutagenic pollutant 4-(methylamino) phenol hemi sulfate, showing a quasi-reversible electron transfer process undergoing diffusion-controlled kinetics. Furthermore, the limit of detection is determined to be 3.2 nM L-1 with an extensive linear range, spanning from 0.05 to 618.25 µM/L. The incredible sensitivity of 2.117 μA μM-1 cm-2, along with excellent selectivity, repeatability, and stability, is observed. Further, the respectable recovery percentage of 98.61 % in the environmental water sample is perceived. The observed outcomes suggest that the prepared Al2O3/DT-AC composite performs as an excellent electrocatalyst material, and the processing techniques used are thought to be sustainable in nature.

Keywords: Activated carbon; Aluminium oxide; Electrochemical sensor; Supercritical-CO(2); Ultrasonication.