Exceptional piezocatalytic H2 production of nitrogen-doped TiO2@carbon nanosheets induced by engineered piezoelectricity

J Colloid Interface Sci. 2024 Apr:659:11-20. doi: 10.1016/j.jcis.2023.12.101. Epub 2023 Dec 22.

Abstract

Piezocatalytic hydrogen evolution is a promising strategy to generate sustainable energy. In this report, nitrogen-doped (N-doped) TiO2@ carbon nanosheets (N-TiO2@C NSs) was successfully synthesized using C3N4 as a multifunctional template. During the synthesis, the two-dimensional (2D) architecture of C3N4 nanosheets directed the synthesis of TiO2 nanosheets. In addition, nitrogens of C3N4 were doped into the TiO2 lattice. Simultaneously, C3N4 was transformed into N-doped carbon nanosheets. N doping broke the crystal symmetry of TiO2, which endowed TiO2 with promising piezoelectric properties. The N-doped carbon nanosheets derived from C3N4 improved charge carrier separation efficiency and served as a flexible support to inhibit structural damage under sonication. Therefore, the N-TiO2@C NSs exhibited highly efficient activity for piezocatalytic H2 production (6.4 mmol·g-1·h-1) in the presence of methanol, much higher than those of the previously reported piezocatalysts. Our method is hoped to provide a new strategy for designing highly efficient piezocatalysts.

Keywords: Hydrogen evolution; Nanocomposite; Nitrogen doping; Piezocatalyst; TiO(2) nanosheets.