CHCHD4-TRIAP1 regulation of innate immune signaling mediates skeletal muscle adaptation to exercise

Cell Rep. 2024 Jan 23;43(1):113626. doi: 10.1016/j.celrep.2023.113626. Epub 2023 Dec 28.

Abstract

Exercise training can stimulate the formation of fatty-acid-oxidizing slow-twitch skeletal muscle fibers, which are inversely correlated with obesity, but the molecular mechanism underlying this transformation requires further elucidation. Here, we report that the downregulation of the mitochondrial disulfide relay carrier CHCHD4 by exercise training decreases the import of TP53-regulated inhibitor of apoptosis 1 (TRIAP1) into mitochondria, which can reduce cardiolipin levels and promote VDAC oligomerization in skeletal muscle. VDAC oligomerization, known to facilitate mtDNA release, can activate cGAS-STING/NFKB innate immune signaling and downregulate MyoD in skeletal muscle, thereby promoting the formation of oxidative slow-twitch fibers. In mice, CHCHD4 haploinsufficiency is sufficient to activate this pathway, leading to increased oxidative muscle fibers and decreased fat accumulation with aging. The identification of a specific mediator regulating muscle fiber transformation provides an opportunity to understand further the molecular underpinnings of complex metabolic conditions such as obesity and could have therapeutic implications.

Keywords: CHCHD4; CP: Immunology; MyoD; TRIAP1; VDAC; cardiolipin; exercise adaptation; innate immune signaling; mitochondria; mtDNA; skeletal muscle.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Immunity, Innate
  • Mice
  • Muscle Fibers, Skeletal*
  • Muscle, Skeletal* / metabolism
  • Obesity / metabolism

Substances

  • Chchd4 protein, mouse