Theoretical computation of the band broadening in micro-pillar array columns

J Chromatogr A. 2024 Jan 25:1715:464607. doi: 10.1016/j.chroma.2023.464607. Epub 2023 Dec 24.

Abstract

We have investigated the possibility to establish a theoretical plate height expression for the band broadening in the most widely used micro-pillar array column format, i.e., a cylindrical pillar array wherein the pillar walls and the channel bottom are coated with a thin layer of meso‑porous material. Assuming isotropic diffusion in the shell-layer, it was found that the vertical diffusive transport along the porous shell-layer covering the pillar walls significantly suppresses the band broadening originating from the vertical migration velocity gradients. As the vertical transport in the shell-layer increases linearly with the retention equilibrium constant K, this leads to an anomalous dependency on the retention factor. Indeed, instead of increasing with k'' and following the classic (1+ak''+bk''2)/(1 + k'')2-dependency governing a classic Taylor-Aris system, the variation of the mobile zone mass transfer resistance term hCm in a 3D pillar array with bottom-wall retention goes through a maximum (resp. factor 1.5 (k''=4) and 2 (k''=16) difference between observed and classic Taylor-Aris behaviour). This effect increases with increasing pillar heights and increasing reduced velocities. Because of this complex k''-dependency, it proves very cumbersome to establish a general plate height equation covering all conditions. Instead, a plate height expression was established that is limited up to k''=4, but remains accurate for higher k''-values for cases where the ratio of pillar height over inter-pillar distance remains below 5. It can however be anticipated the proposed analytical model is only valid in a rather limited range around the presently considered external porosity of ε=0.5.

Keywords: Band broadening; Brenner's general theory of dispersion; Computational fluid dynamics; Micro-LC; Micro-pillar array columns; Plate height model.

MeSH terms

  • Diffusion
  • Porosity*