Control of nuclear envelope dynamics during acute ER stress by LINC complexes disassembly and selective, asymmetric autophagy of the outer nuclear membrane

Autophagy. 2023 Dec 28:1-3. doi: 10.1080/15548627.2023.2299123. Online ahead of print.

Abstract

The endoplasmic reticulum (ER) extends to the outer (ONM) and the inner (INM) nuclear membrane forming the nuclear envelope (NE) that delimits the nucleoplasm containing the cell genome. Unfolded protein responses (UPRs) and reticulophagy responses increase or reduce ER size and activities, respectively. If dynamic changes of the ER are transmitted to the contiguous NE was not known. In our recent publication, we report on the transmission of stress-induced ER expansion to the NE, which requires disassembly of the Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes deputed to ensure a physical connection between the cytoplasmic cytoskeleton and the nuclear lamina and to maintain the width between INM and ONM within 50 nm. LINC complexes disassembly relies on reduction of the disulfide bond that covalently links SUN proteins in the INM and KASH proteins (SYNE/NESPRIN proteins in mammals) in the ONM by the ONM-resident reductase TMX4. Upon stress resolution, the physiological shape of the NE is reestablished by SEC62-driven ONM-phagy, where ONM-derived vesicles are directly captured by RAB7- and LAMP1-positive endolysosomes in processes that proceed via asymmetric microautophagy of the NE.

Keywords: ER stress; ER-phagy; KASH proteins; LINC complex; Nuclear envelope; ONM-phagy.