Characterization of the Oxazolone and Macrocyclic Motifs in the bn (n = 2-5) Product Ions from Collision-Induced Dissociation of Protonated Oligoglycine Peptides with Isomer-Selective, Cryogenic Vibrational Spectroscopy

J Am Soc Mass Spectrom. 2024 Feb 7;35(2):326-332. doi: 10.1021/jasms.3c00372. Epub 2023 Dec 27.

Abstract

Collision-induced dissociation (CID) of small, protonated peptides leads to the formation of b-type fragment ions that can occur with several structural motifs driven by different covalent intramolecular bonding arrangements. Here, we characterize the so-called "oxazolone" and "macrocycle" bn ion structures that occur upon CID of oligoglycine peptides (Gn) ions (n = 2-6). This is determined by acquiring the vibrational band patterns of the cryogenically cooled, D2-tagged bn ions obtained using isomer-selective, two-color IR-IR photobleaching and analyzing them with predicted (DFT) harmonic spectra for the candidate structures. Both oxazolone and macrocyclic isomers are formed by b4, whereas only oxazolone species are created for b2 and b3 and the macrocycle is created for b5. As such, n = 4 corresponds to the minimum size where both Oxa and MC forms are present.