Development and validation of a gel wax phantom to evaluate geometric accuracy and measurement of a hyperechoic target diameter in diagnostic ultrasound imaging

Phys Eng Sci Med. 2024 Mar;47(1):261-272. doi: 10.1007/s13246-023-01362-0. Epub 2023 Dec 27.

Abstract

Diagnostic ultrasound (US) scanners are generally evaluated using proprietary quality assurance (QA) phantoms, but their prohibitively high cost may prevent organizations to perform the necessary tests. This study aimed to develop a low-cost gel wax phantom with targets to determine the lateral and axial resolution and diameter of a hyperechoic target in an US scanner. The acoustic property (AP) of gel wax, which includes the speed of sound (cus), acoustic impedance (Z), and attenuation coefficient (µ), were determined for multiple transducers operating at 2.25, 5, 10, 15, and 30 MHz. These results were compared to the AP of soft tissue. Two polytetrafluoroethylene (PTFE) rectangular frames with holes separated by 5, 10, and 20 mm were constructed. Nylon filaments and stainless-steel disc (SS disc) (diameter = 16.8 mm) were threaded through the frames and suitably placed in gel wax to obtain orthogonal targets in the phantom. The target dimensions obtained from computerized tomography (CT) and US images of the phantom were compared for phantom validation. The average cus=1431.4 m/s, mass density ρ = 0.87 g/cm3, Z = 1.24 MRayls, and µ ranged from 0.7 to 0.98 dB/cm/MHz for gel wax at 22 °C. The US image measurement exhibited a maximum error in determining the diameter of the SS disc, resulting in a value of 18 mm instead of its actual value of 16.8 mm. The phantom volume decreased by 1.8% in 62 weeks. The present phantom is affordable, stable, customizable, and can be used to evaluate diagnostic US scanners across multiple centers.

Keywords: Acoustic property; Image quality assessment; Ultrasound imaging; Ultrasound phantom; Ultrasound quality assurance.

MeSH terms

  • Acoustics
  • Phantoms, Imaging
  • Tomography, X-Ray Computed*
  • Ultrasonics*
  • Ultrasonography / methods