Ultrathin Water-Responsive Zwitterionic Hydrogel Brush Coatings for Long-Term Corrosion Protection

ACS Appl Mater Interfaces. 2024 Jan 10;16(1):1416-1427. doi: 10.1021/acsami.3c13841. Epub 2023 Dec 27.

Abstract

Preventing metal corrosion has usually been associated with water-repellent coatings that inhibit the penetration of aggressive chloride ions. Contrary to this conventional wisdom, we engineered ultrathin superhydrophilic zwitterionic hydrogel brushes rooted in a nanoporous anodic aluminum oxide (AAO) substrate that effectively hampered the adsorption of hydrated chloride ions (Cl-·H2O) on the Al alloy surface. The hydrogel brush coating enhanced corrosion resistance by 3 orders of magnitude, with corrosion current density declining from 1.518 to 1.567 × 10-3 μA cm-2. Despite suffering from long-term salt-spaying tests, zwitterionic hydrogel brush coating retained 2 orders of magnitude of corrosion resistance. Direct Raman spectroscopic evidence manifested that interfacial water comprised both highly ordered hydrogen-bonded water and disordered water containing hydrated Cl- ions. Under the hydration effect of zwitterionic hydrogel brushes, an interfacial disordered water structure dynamically transformed into a hydrogen-bonded water film. We correlated the structure and quantities of interfacial water with the corrosion current density and chloride adsorption. Hydrogen-bonded water improved by zwitterionic hydrogel brushes weakened the affinity and adsorption of hydrated Cl- ion water on the oxide film, resulting in excellent corrosion protection. Therefore, employing localized hydration tuning strategies, these findings are anticipated to generally empower ordered interfacial water to enhance metal corrosion resistance through precise interfacial engineering.

Keywords: anticorrosion mechanism; chloride adsorption; interfacial water structure; ultrathin hydrogel brushes; water responsive.