Bioavailability of flumequine and diclofenac in mice exposed to a metal-drug chemical cocktail. Evaluation of the protective role of selenium

Br J Pharmacol. 2023 Dec 27. doi: 10.1111/bph.16312. Online ahead of print.

Abstract

Background and purpose: Organisms, including humans, are subjected to the simultaneous action of a wide variety of pollutants, the effects of which should not be considered in isolation, as many synergies and antagonisms have been found between many of them. Therefore, this work proposes an in vivo study to evaluate the effect of certain metal contaminants on the bioavailability and metabolism of pharmacologically active compounds. Because the most frequent entry vector is through ingestion, the influence of the gut microbiota and the possible protective effects of selenium has been additionally evaluated.

Experimental approach: A controlled exposure experiment in mammals (Mus musculus) to a "chemical cocktail" consisting of metals and pharmaceuticals (diclofenac and flumequine). The presence of selenium has also been evaluated as an antagonist. Mouse plasma samples were measured by UPLC-QTOF. A targeted search of 48 metabolites was also performed.

Key results: Metals significantly affected the FMQ plasma levels when the gut microbiota was depleted. Hydroxy FMQ decreased if metals were present. Selenium minimized this decrease. The 3-hydroxy DCF metabolite was not found in any case. Changes in some metabolic pathways are discussed.

Conclusions and implications: The presence of metals in the mouse diet as well as the prior treatment of mice with an antibiotic mixture (Abxs), which deplete the gut microbiota, has a decisive effect on the bioavailability and metabolism of the tested pharmaceuticals and dietary selenium minimize some of their effects.

Keywords: diclofenac; drug metabolism; flumequine; metals; mice.