Optimization of RT-PCR methods for enterovirus detection in groundwater

Heliyon. 2023 Nov 29;9(12):e23028. doi: 10.1016/j.heliyon.2023.e23028. eCollection 2023 Dec.

Abstract

Enteroviruses (EVs), which belong to the Picornaviridae family, infect individuals asymptomatically or cause mild symptoms (fever, runny nose, cough, skin rash, sneezing, mouth blister). Severe cases can cause various diseases, such as acute hemorrhagic conjunctivitis, aseptic meningitis, or myocarditis, especially in infants. These viruses can be transmitted via the fecal-oral route via contaminated water. In this study, we established a polymerase chain reaction (PCR) method for detecting EVs in water sample using Coxsackievirus B5 (CV-B5) and Echovirus 30 (E-30), which belong to species B of the four species of EVs (EV-A to D). Several methods have been investigated and compared for the detection of EVs, including real-time reverse transcription (RT) polymerase chain reaction and conventional RT-PCR. The most sensitive primer sets were selected, and the PCR conditions were modified to increase sensitivity. We also quantified the detection limits of real-time and conventional RT-PCR. The detection limits of conventional RT-PCR were detected in 105-106 copy/mL for CV-B5 and 106-107 copy/mL for E-30, respectively. This optimized method for detecting EVs is expected to contribute substantially to the investigation of EV outbreaks in water samples.

Keywords: Conventional RT-PCR; Enterovirus; Hand-foot-and-mouth disease; Real-time RT-PCR; Waterborne viruses.