Investigating the impact of sous vide cooking on the eating quality of spent buffalo (BUBALUS BUBALIS) meat

Meat Sci. 2024 Mar:209:109417. doi: 10.1016/j.meatsci.2023.109417. Epub 2023 Dec 16.

Abstract

This study describes the impact of sous vide cooking at different temperatures and time intervals on the eating quality, specifically tenderness of two muscles, bicep femoris (BF) and semitendinosus (ST) from spent buffalo (Bubalus bubalis). Spent buffalo refers to water buffalo that are no longer considered productive following a sixth lactation cycle. Steaks from each muscle were obtained and cooked at three combinations of time and temperature, namely 55 °C-8H, 65 °C-5H, and 95 °C-45 M, respectively. Warner-Bratzler Shear Force (WBSF), cooking loss, cooking yield, color, water activity (aw), total water content (TWC), total collagen content (TCC), heat soluble collagen (HSC), myofibrillar fragmentation index (MFI), and sensory evaluation were measured. The collagen solubilization results showed that temperature and time interacted (P ≤ 0.05), reducing the toughness of the muscles. The tenderization achieved through sous vide cooking was mainly attributed to the thermal denaturation of proteins at the typically lower temperatures and extended time used, weakening of connective tissue through collagen solubilization, and water retention. More cooking loss (P ≤ 0.05) was observed at high temperature treatment of 95 °C-45 M. Meat color, TWC, MFI, and overall acceptability exhibited differences among treatments (P ≤ 0.05). An extended heat interval at lower temperatures caused initial denaturation of myofibrillar proteins, then solubilization of connective tissue proteins. Cooking treatment 55 °C-8H (P ≤ 0.05) reduced the WBSF in both muscles; however, the ST appeared more tender than BF.

Keywords: Bicep Femoris; Heat soluble collagen; Myofibrillar fragmentation index; Semitendinosus; Sous vide; Spent buffalo; Tenderness.

MeSH terms

  • Animals
  • Buffaloes*
  • Collagen
  • Cooking / methods
  • Female
  • Meat* / analysis
  • Temperature

Substances

  • Collagen