A semi-automatic segmentation method for meningioma developed using a variational approach model

Neuroradiol J. 2024 Apr;37(2):199-205. doi: 10.1177/19714009231224442. Epub 2023 Dec 26.

Abstract

Background: Meningioma is the commonest primary brain tumour. Volumetric post-contrast magnetic resonance imaging (MRI) is recognised as gold standard for delineation of meningioma volume but is hindered by manual processing times. We aimed to investigate the utility of a model-based variational approach in segmenting meningioma.

Methods: A database of patients with a meningioma (2007-2015) was queried for patients with a contrast-enhanced volumetric MRI, who had consented to a research tissue biobank. Manual segmentation by a neuroradiologist was performed and results were compared to the mathematical model, using a battery of tests including the Sørensen-Dice coefficient (DICE) and JACCARD index. A publicly available meningioma dataset (708 segmented T1 contrast-enhanced slices) was also used to test the reliability of the model.

Results: 49 meningioma cases were included. The most common meningioma location was convexity (n = 15, 30.6%). The mathematical model segmented all but one incidental meningioma, which failed due to the lack of contrast uptake. The median meningioma volume by manual segmentation was 19.0 cm3 (IQR 4.9-31.2). The median meningioma volume using the mathematical model was 16.9 cm3 (IQR 4.6-28.34). The mean DICE score was 0.90 (SD = 0.04). The mean JACCARD index was 0.82 (SD = 0.07). For the publicly available dataset, the mean DICE and JACCARD scores were 0.90 (SD = 0.06) and 0.82 (SD = 0.10), respectively.

Conclusions: Segmentation of meningioma volume using the proposed mathematical model was possible with accurate results. Application of this model on contrast-enhanced volumetric imaging may help reduce work burden on neuroradiologists with the increasing number in meningioma diagnoses.

Keywords: Meningioma; monitoring; segmentation.

MeSH terms

  • Humans
  • Image Processing, Computer-Assisted / methods
  • Magnetic Resonance Imaging / methods
  • Meningeal Neoplasms* / diagnostic imaging
  • Meningioma* / diagnostic imaging
  • Reproducibility of Results