Plasmon-induced magnetic anapole mode assisted strong field enhancement

J Chem Phys. 2023 Dec 28;159(24):244701. doi: 10.1063/5.0180255.

Abstract

Optical metamaterials, sensing, nonlinear optics, and surface-enhanced spectroscopies have witnessed the remarkable potential of the anapole mode. While dielectric particles with a high refractive index have garnered significant attention in recent years, the exploration of plasmonic anapole modes with intense localized electric field enhancements in the visible frequency range remains limited. In this study, we present a theoretical investigation on the relationship between the strongest near-field response and magnetic anapole modes, along with their substantial enhancement of Raman signals from probing molecules. These captivating findings arise from the design of a practical metallic oblate spheroid-film plasmonic system that generates magnetic anapole resonances at frequencies within the visible-near-infrared range. This research not only sheds light on the underlying mechanisms in a wide range of plasmon-enhanced spectroscopies but also paves the way for innovative nano-device designs.